معــــــــــــــــــــــــــا نرســـــــــــــــــــــــــــــم عالمنــــــــــــــــــــــــــا

اهلا وسهلا بك زائرنا الكريم يسعدنا تسجيلك في اسرتنا او دخولك اذا كنت عضوا
في منتدانا المتواضع`·.¸¸.·´´¯`··._.· (معــــــــــــــــــــــــــــــــا ) `·.¸¸.·´´¯`··._.·`


انضم إلى المنتدى ، فالأمر سريع وسهل

معــــــــــــــــــــــــــا نرســـــــــــــــــــــــــــــم عالمنــــــــــــــــــــــــــا

اهلا وسهلا بك زائرنا الكريم يسعدنا تسجيلك في اسرتنا او دخولك اذا كنت عضوا
في منتدانا المتواضع`·.¸¸.·´´¯`··._.· (معــــــــــــــــــــــــــــــــا ) `·.¸¸.·´´¯`··._.·`

معــــــــــــــــــــــــــا نرســـــــــــــــــــــــــــــم عالمنــــــــــــــــــــــــــا

هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

معــــــــــــــــــــــــــا نرســـــــــــــــــــــــــــــم عالمنــــــــــــــــــــــــــا


    Complex Systems in Biomedicine

    avatar
    mostafasharshar

    Complex Systems in Biomedicine 262267333


    مصرى

    Complex Systems in Biomedicine 700850549
    ذكر
    عدد المساهمات : 244

    نقاط : 728
    تاريخ التسجيل : 09/11/2009
    المزاج : الحمد لله

    Complex Systems in Biomedicine Empty Complex Systems in Biomedicine

    مُساهمة من طرف mostafasharshar الثلاثاء يناير 19, 2010 11:26 am

    Complex Systems in Biomedicine



    Complex Systems in Biomedicine 41RIEJjVw2L

    Complex Systems in Biomedicine
    By A. Quarteroni, L. Formaggia, A. Veneziani



    Publisher: Springer
    Number Of Pages: 292
    Publication Date: 2006-07-11
    ISBN-10 / ASIN: 8847003946
    ISBN-13 / EAN: 9788847003941
    Binding: Hardcover




    Mathematical modeling of human physiopathology is a tremendously
    ambitious task. It encompasses the modeling of most diverse
    compartments such as the cardiovascular, respiratory, skeletal and
    nervous systems, as well as the mechanical and biochemical interaction
    between blood flow and arterial walls, or electrocardiac processes and
    the electric conduction into biological tissues. Mathematical models
    can be set up to simulate both vasculogenesis (the aggregation and
    organisation of endothelial cells dispersed in a given environment) and
    angiogenesis (the formation of new vessels sprouting from an existing
    vessel) that are relevant to the formation of vascular networks, and in
    particular to the description of tumor growth. The integration of
    models aimed at simulating the cooperation and interrelation of
    different systems is an even more difficult task. It calls for the set
    up of, for instance, interaction models for the integrated
    cardio-vascular system and the interplay between central circulation
    and peripheral compartments, models for the mid-long range
    cardiovascular adjustments to pathological conditions (e.g. to account
    for surgical interventions, congenital malformations, or tumor growth),
    models for the integration among circulation, tissue perfusion,
    biochemical and thermal regulation, models for parameter identification
    and sensitivity analysis to parameter changes or data uncertainty and
    many others. The heart is a complex system in itself, where electrical
    phenomena are functionally related with the wall deformation. In its
    turn, electrical activity is related with heart physiology. It involves
    nonlinear reaction-diffusion processes and provides the activation
    stimulus to the heart dynamics and eventually the blood ventricular
    flow that drives the haemodynamics of the whole circulatory system. In
    fact, the influence is reciprocal, since the circulatory system in
    turns affects the heart dynamics and may induce an overload depending
    upon the individual physiopathologies ( for instance the presence of a
    stenotic artery or a vascular prosthesis).Virtually, all the fields of
    mathematics have a role to play in this context. Geometry and
    approximation theory provide the tools for handling clinical data
    acquired by tomography or magnetic resonance, identifying meaningful
    geometrical patterns and producing three-dimensional geometrical models
    stemming from the original patients data. Mathematical analysis, flow
    and solid dynamics, stochastic analysis are used to set up the
    differential models and predict uncertainty. Numerical analysis and
    high performance computing are needed to numerically solve the complex
    differential models. Finally, methods from stochastic and statistical
    analysis are exploited for the modeling and interpretation of
    space-time patterns. Indeed, the complexity of the problems at hand
    often stimulates the use of innovative mathematical techniques that are
    able, for instance, to accurately catch those processes that occur at
    multiple scales in time and space (like cellular and systemic effects),
    and that are governed by heterogeneous physical laws.













    6729 KB RAR'd PDF

    pass: giga
    http://rapidshare.com/files/24148492/Qua_ComSysinBioMed.rar








      الوقت/التاريخ الآن هو الجمعة نوفمبر 22, 2024 1:44 pm